Máy tính giờ đây không chỉ là một công cụ phục vụ khoa học. Nó đã trở thành một phần của khoa học.
Khoa học máy tính hiện không chỉ nói về phần cứng hay phần mềm mà còn về các đại dương, ngôi sao, tế bào ung thư, protein và mạng lưới bạn bè. Ken Birman, Giáo sư khoa học máy tính Đại học Cornell (Mỹ), nói ngành học của ông đang trên đường trở thành “một ngành khoa học của vũ trụ”, một cơ cấu làm nền tảng cho mọi ngành khác, bao gồm các ngành khoa học xã hội.
Máy tính trở thành một phần của khoa học
Bản chất của vấn đề ông Birman khẳng định là máy tính đã biến đổi từ một công cụ phục vụ khoa học thành một phần của khoa học. Và những diễn tiến gần đây trong giới khoa học phần nào đã cho thấy điều này.
“Các nhà sinh vật học hệ thống” tại trường Y Harvard đã phát triển một “ngôn ngữ máy tính” gọi là “Little b” dùng để lập mô hình các tiến trình sinh học. Ngôn ngữ này biết suy luận về dữ liệu sinh học, học hỏi từ nó và tích hợp những gì đã học vào trong những mô hình mới và những dự báo về hành vi của tế bào. Các tác giả gọi loại ngôn ngữ này là một “người cộng tác khoa học”.
Trong khi đó, bộ phận nghiên cứu của Microsoft (Microsoft Research - MSR) - đang hỗ trợ một nhóm trường đại học Mỹ và Canada xây dựng một trạm quan sát khổng lồ dưới biển ở ngoài khơi gần bờ biển bang Washington (Mỹ). Dự án Neptune này sẽ kết nối hàng ngàn bộ cảm biến hóa học, địa lý và sinh vật học trên hơn 1.600 km sợi cáp quang và sẽ liên tục truyền dữ liệu đến các nhà khoa học trong khoảng thời gian đến 10 năm.
Các nhà khoa học sẽ có thể kiểm chứng những học thuyết của mình bằng cách xem xét dữ liệu thu thập được, bên cạnh đó, những công cụ phần mềm mà MSR đang phát triển sẽ tìm kiếm những khuôn mẫu và sự kiện mà các nhà khoa học không tiên liệu được, và gửi cho họ những phát hiện này.
Vào năm ngoái, các nhà nghiên cứu tại trường Y Harvard và Đại học California, trong một cuộc nghiên cứu, đã dùng phương pháp phân tích thống kê để tìm kiếm dữ liệu về bệnh tim của 12.000 người và biết rằng chứng béo phì có vẻ “lây lan” thông qua các mối quan hệ xã hội. Trong khi đó, các nhà khoa học máy tính và sinh vật học cây trồng tại Đại học Cornell phát triển một thuật toán để lập và phân tích bản đồ ba chiều của protein khoai tây.
Những ứng dụng nói trên hầu như không có điểm chung nào, nhưng chúng đại diện cho một loại vấn đề khoa học liên quan đến một khối lượng lớn dữ liệu thực nghiệm phức tạp. Trong thực tế, những loại thông tin thô này quá nhiều đến nỗi các nhà khoa học thường không biết bắt đầu tìm hiểu từ đâu. Khoa học máy tính đang chỉ cho họ đường đi.
“Khoa học điện tử”
Theo Giáo sư Jon Kleinberg, Đại học Cornell: “Một xu hướng đang ngày càng trở nên rõ ràng là khoa học máy tính không còn là ngành cung cấp công cụ máy tính cho các nhà khoa học. Nó thực sự trở thành một phần của cách thức các nhà khoa học xây dựng học thuyết và suy nghĩ về những vấn đề của họ.” Theo ông Kleinberg, vai trò của thuật toán máy tính đối với khoa học trong thế kỷ 21 cũng sẽ tương tự như vai trò của toán học (đối với khoa học) trong thế kỷ 20.
Tony Hey, Phó chủ tịch bộ phận nghiên cứu bên ngoài của Microsoft, đã nói về “khoa học điện tử” (e-science), một tập hợp những công nghệ dùng để hỗ trợ những dự án khoa học có lượng dữ liệu khổng lồ (thường được phân phối), có dữ liệu và nhiều người cộng tác kết nối với nhau, hay có sự tham gia của nhiều ngành khoa học, bao gồm ngành khoa học máy tính. Những dự án này, theo ông, thường rất phức tạp, và các công cụ, thuật toán, học thuyết của khoa học máy tính có thể giúp sắp xếp và làm rõ chúng.
Ông Hey cho rằng chúng ta hiện đang tiến vào kỷ nguyên “khoa học tập trung vào dữ liệu” (data-centric science). Bản chất của ngành khoa học này là tập hợp dữ liệu, thường với số lượng lớn và từ nhiều nguồn khác nhau, rồi khai thác chúng để biết được những nội dung vốn sẽ không bao giờ xuất hiện nếu công việc này được làm thủ công hoặc từ việc phân tích bất kỳ một nguồn dữ liệu đơn lẻ nào.
Roger Barga, một nhà nghiên cứu tại MSR, đang phát triển những công cụ cho khoa học điện tử - ngành mà ông gọi là “in silico science” (tạm dịch là khoa học được thực hiện bên trong máy tính). Theo ông, có hai diễn tiến công nghệ đang thúc đẩy khoa học điện tử phát triển.
Trước hết, khả năng thu thập dữ liệu của chúng ta đã vượt xa khả năng phân tích chúng bằng những công cụ truyền thống. Thứ hai là sự xuất hiện của những công cụ cải thiện khả năng nhận biết khuôn mẫu và sự học hỏi của máy - những thuật toán có thể cải thiện theo thời gian khi chúng tiếp xúc ngày càng nhiều với dữ liệu mà không cần đến sự lập trình của con người - và những cách thức mới để tổ chức, truy xuất và khai thác lượng dữ liệu khổng lồ.
Giáo sư Kleinberg nói thêm rằng kho dữ liệu khổng lồ trên Internet sẽ thay đổi thực tiễn của những ngành khoa học liên quan đến hành vi con người. Theo lý giải của ông, số lượng dữ liệu khổng lồ và các phương pháp phân tích mới hiện nay đồng nghĩa với việc các nhà khoa học sẽ không còn phải lập công thức chi tiết về những học thuyết và mô hình rồi kiểm chứng chúng trên dữ liệu thực nghiệm.
(Theo Tạp chí Hoạt động Khoa Học)
Chuyển nhượng, cho thuê hoặc hợp tác phát triển nội dung trên các tên miền:
Quý vị quan tâm xin liên hệ: tieulong@6vnn.com